If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-26x+14=0
a = 5; b = -26; c = +14;
Δ = b2-4ac
Δ = -262-4·5·14
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-6\sqrt{11}}{2*5}=\frac{26-6\sqrt{11}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+6\sqrt{11}}{2*5}=\frac{26+6\sqrt{11}}{10} $
| x-3/4=2x-1/8 | | 2(x-2)^2=18 | | x-4.5=0 | | 3n-1/3=8/3 | | 7c+9=11c-3 | | z/5-4=31/2 | | 4(x+7)=9x+4 | | 3(x-1)-9=30 | | -4d=2d | | 6x+4x=3476+8x | | 8+4k=8k+7 | | 3(x+8)=13x-16 | | 4x3-32x=0 | | 4^x-2^x=-7 | | -4-8=3n+2 | | 6/4=h/10h= | | 4-n=26 | | 3(b+2)/4=4b-14/8 | | -322=7x-7(-6x+21) | | n+4=26 | | 2x+5=77x-10 | | 25=-5/2x | | 2x-0.9=3x | | 82+p/4=96 | | -14x-7=9x-42 | | 3b+6/4=4b-14/8 | | n-5/5n-10=4/8 | | 27=-9/5x | | 5r-(3r+8)=16 | | 9x+26=12x+20 | | 5d=9d | | 8*6x-10x=16-8x |